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ABSTRACT 
In mathematics, a bitopological space is a set endowed with two topologies. Typically, if the set is   and the 

topologies are   and   then the bitopological space is referred to as  .  In this paper, we introduce a notion of 

fuzzy pairwise-𝑇2 bitopological space and find relations with other such spaces. We also study some other 

properties of these concepts.   
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INTRODUCTION 
Bitopological variants of topological properties 

Corresponding to well-known properties of topological spaces, there are versions for bitopological spaces. 

 A bitopological space  is pairwise compact if each cover  of  with , 

contains a finite subcover. In this case,  must contain at least one member from  and at least 

one member from  

 A bitopological space  is pairwise Hausdorff if for any two distinct points  there exist 

disjoint  and  with  and . 

 A bitopological space  is pairwise zero-dimensional if opens in  which are closed 

in  form a basis for , and opens in  which are closed in  form a basis for . 

 A bitopological space  is called binormal if for every  -closed and  -closed sets there 

are  -open and  -open sets such that  , and  

The notion of bitopological spaces was initially introduced by Kelly [7] in 1963. Concept of fuzzy pairwise-𝑇2 

(in short 𝐹𝑃𝑇2) bitopological spaces were introduced earlier by Kandil and El-Shafee [5]. Later on several other 

authors continued investigating such concepts. Fuzzy pairwise-𝑇2 separation axioms have also been introduced 

by Abu Sufiya et al. [1] and Nouh [9]. The purpose of this paper is to introduce a definition of fuzzy pairwise-

𝑇2 bitopological space and derive some related results in this area. Also, we investigate that this concept holds 

good extension property in the sense of  due to Lowen [1-4]. 

 

PRELIMINARIES ON FUZZY PAIRWISE-𝑇2 BITOPOLOGICAL SPACES 
Now we recall some definitions and concepts which will be used in our work. 

Definition2.1. A fuzzy set 𝜇 in a set 𝑋 is a function from 𝑋 into the closed unit interval 𝐼=[0,1]. For every 

𝑥∈𝑋,(𝑥)∈𝐼 is called the grade of membership of 𝑥. Throughout this paper, 𝐼𝑋 will denote the set of all fuzzy sets 

from 𝑋 into the closed unit interval 𝐼. 
Definition 2.2. Let 𝑓 be a mapping from a set 𝑋 into a set 𝑌 and 𝑢 be a fuzzy set in 𝑋. Then the image of 𝑢, 

written as 𝑓(𝑢), is a fuzzy set in 𝑌 whose membership function is given by  𝑓(𝑢)(𝑦)={ sup{u (X)}  if f -1 [{x}]  

 and 0 for otherwise 
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Definition 2.3.  Let 𝑓 -1 be a mapping from a set 𝑋 into a set 𝑌 and 𝑣 be a fuzzy set in 𝑌. Then the inverse of 𝑣 

written as 𝑓-1 (𝑣) is a fuzzy set in 𝑋 which is defined by 𝑓-1 (𝑣)(𝑥)=𝑣(𝑓(𝑥)), for 𝑥∈𝑋. 

Definition 2.4. A fuzzy set 𝜇 in 𝑋 is called a fuzzy singleton if f (𝑥)=𝑟,(0<𝑟≤1) for a certain 𝑥∈𝑋 and 𝜇(𝑦)=0 for 

all points 𝑦 of 𝑋 except 𝑥. The fuzzy singleton is denoted by 𝑥𝑟 and 𝑥 is its support. We call 𝑥𝑟 is a fuzzy point 

if 0<𝑟<1. The class of all fuzzy singletons in 𝑋 will be denoted by (𝑋). 

Definition 2.5.  A fuzzy topology 𝑡 on 𝑋 is a collection of members of 𝐼𝑋 which is closed under arbitrary 

suprema and finite infima and which contains constant fuzzy sets 1 and 0. The pair ( X,t ) is called a fuzzy 

topological space (fts, in short) and members of 𝑡 are called 𝑡-open (or simply open) fuzzy sets. A fuzzy set 𝜇 is 

called a 𝑡- closed (or simply closed ) fuzzy set if 1−𝜇∈𝑡. 
 

Definition 2.6.] Let (𝑋,) and (𝑌,) be two fuzzy topological spaces. A mapping 𝑓: (𝑋,)⟶(𝑌,𝑠) is called an fuzzy 

continuous iff for every 𝑣∈𝑠, 𝑓−1(𝑣)∈𝑡. 
 

Definition 2.7.  Let (𝑋,) and (𝑌,) be two fuzzy topological spaces. A mapping 𝑓: (𝑋,)⟶(𝑌,𝑠) is called an fuzzy 

open iff for every 𝑢∈𝑡, 𝑓(𝑢)∈𝑠. 
 

Definition 2.8. Let 𝑓 be a real valued function on a topological space. If {:(𝑥)>𝛼} ∈𝐼1, 

then 𝑓 is called lower semi continuous function. 

Definition 2.9.  Let 𝑋 be a nonempty set and 𝑇 be a topology on 𝑋. Let 𝑡=(𝑇) be the set of all lower semi 

continuous functions from (X,T) to 𝐼 (with usual topology). Thus (𝑇)={𝜇∈𝐼𝑋: 𝜇−1(𝛼,1]∈𝑇} for each 𝛼∈𝐼1. It 

can be shown that (𝑇) is a fuzzy topology on 𝑋. 

Let 𝑃 be a property of topological spaces and 𝐹𝑃 be its fuzzy topology analogue. Then 𝐹𝑃 is called a ‘good 

extension’ of 𝑃 “iff the statement (𝑋,) has 𝑃 iff (𝑋,(𝑇)) has 𝐹𝑃” holds good for every topological space (𝑋,𝑇). 

Definition 2.10. A fuzzy singleton 𝑥𝑟 is said to be quasi-coincident with a fuzzy set 𝜇, denoted by 𝑥𝑟𝑞𝜇 iff 

𝑟+(𝑥)>1. If 𝑥𝑟 is not quasi-coincident with 𝜇, we write 𝑥𝑟�̅�𝜇. 

 

Definition 2.11.  A fuzzy set 𝑢 of (𝑋,) is called quasi-neighborhood (Q-nbd, in short) of 𝑥𝑟 iff there exists 𝑣∈𝑡 
such that 𝑥𝑟𝑞𝑣 and 𝑣⊂𝑢. If 𝑥𝑟 is a fuzzy point or a fuzzy single tone, then (𝑥𝑟,)={𝜇∈𝑡: 𝑥𝑟∈𝜇} is the family of 

all fuzzy 𝑡-open neighborhoods (𝑡-nbds, in short) of 𝑥𝑟 and 𝑁𝑄(𝑥𝑟,𝑡)={𝜇∈𝑡: 𝑥𝑟𝑞 𝜇} is the family of all Q-

neighborhoods (Q-nbd, in short) of 𝑥𝑟. 

 

Definition 2.12. A fuzzy bitopological space (fbts, in short) is a triple (𝑋,,) where 𝑠 and 𝑡 are arbitrary fuzzy 

topologies on 𝑋. 

Definition 2.13. Let (𝑋,,) and (𝑌,𝑠1,𝑡1) be two fuzzy bitopological spaces. A mapping 𝑓: (𝑋,𝑠,𝑡)⟶(𝑌,𝑠,𝑡) is 

called an fuzzy FP-continuous iff 𝑓: (𝑋,𝑠)⟶(𝑌,𝑠1) and 𝑓: (𝑋,𝑡)⟶(𝑌,𝑡1) are both continuous. 

  

Definition 2.14.  Let (𝑋,,) and (𝑌,𝑠1,𝑡1) be two fuzzy bitopological spaces. A mapping 𝑓: (𝑋,𝑠,𝑡)⟶(𝑌,𝑠,𝑡) is 

called an fuzzy FP-open iff 𝑓: (𝑋,𝑠)⟶(𝑌,𝑠1) and 𝑓: (𝑋,𝑡)⟶(𝑌,𝑡1) are both open. 

 

Definition 2.15.  A space (𝑋,𝑆,𝑇) is said to be pairwise Hausdorff iff for each two distinct points 𝑥 and 𝑦, there 

are a 𝑆-neighbourhood 𝑈 of 𝑥 and a 𝑇-neighbourhood 𝑉 of 𝑦 such that 𝑈∩𝑉=∅ [3-8]. 

FUZZY PAIRWISE T2-SPACES 
Definition 3. 1. An fbts (𝑋,,) is called 

(a) 𝐹𝑃𝑇2(𝑖) iff for every pair of fuzzy singletons 𝑥𝑟,𝑦𝑠 in 𝑋 with 𝑥≠𝑦, there exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 such that 

𝑥𝑟𝑞𝜇, 𝑦𝑠𝑞𝜆 and 𝜇∩𝜆=0. 

 

(b)[9] 𝐹𝑃𝑇2(𝑖𝑖) iff (∀𝑥𝑟,𝑦𝑠∈𝑆(𝑋),𝑥≠𝑦), (∃𝜇∈𝑁(𝑥𝑟,𝑠)(∃ 𝜆∈𝑁𝑄(𝑦𝑟,𝑡)) (𝜇�̅�𝜆) or (∃𝜇∗∈𝑁(𝑥𝑟, 𝑡)(∃ 

𝜆∗∈𝑁𝑄(𝑦𝑟,𝑠))(𝜇∗�̅�𝜆∗). 
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(c)[5] 𝐹𝑃𝑇2(𝑖𝑖𝑖) iff for every pair of fuzzy singletons 𝑥𝑝,𝑦𝑟 in 𝑋 such that 𝑥𝑝�̅�𝑦𝑟, there exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 
such that 𝑥𝑝∈𝜇, 𝑦𝑟∈𝜆 and 𝜇𝑞 ̅𝜆. 

 

 

(d)[1] 𝐹𝑃𝑇2(𝑖𝑣) iff for every pair of fuzzy singletons 𝑥𝑟,𝑦𝑠 in 𝑋 with 𝑥≠𝑦, there exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 such 

that 𝑥𝑟∈𝜇, 𝑦𝑠∈𝜆 and 𝜇∩𝜆=0. 

(e)[1] 𝐹𝑃𝑇2(𝑣) iff for any two distinct fuzzy points 𝑥𝑟,𝑦𝑠 in 𝑋, there exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 such that 𝑥𝑟∈𝜇, 

𝑦𝑠∈𝜆 and 𝜇⊆𝜆𝑐. 
 

Theorem 3.2. Let (𝑋,,) be an fbts. Then we have the following implications: 

(a)⇔(d) ⇒ (b) ⇒ (e) but (b)⇏ (d), (e)⇏ (b), (a)⇏ (c) and (c)⇏ (a). 

Proof: (a) ⇒ (d): Let 𝑥𝑟,∈𝑆(𝑋) with 𝑥≠𝑦. Since (𝑋,,) is FP𝑇2(𝑖)-space, then there exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 such 

that 𝑥1−𝑟𝑞𝜇, 𝑦1−𝑝𝑞𝜆 and 𝜇∩ 𝜆=0. 

That is, (𝑥)>𝑟, (𝑦)>𝑝 and 𝜇∩ 𝜆=0. 

So, 𝑥𝑟∈ 𝜇, 𝑦𝑝∈ 𝜆 and 𝜇∩ 𝜆=0. Hence (𝑋,,) is FP𝑇2(𝑖𝑣)-space. Similarly we can show that (d) ⇒ (a). 

 

(d) ⇒ (b): Let 𝑥𝑟,∈𝑆(𝑋) with 𝑥≠𝑦. Choose 𝑝∗∈(0,1) such that 𝑝∗>1−𝑝. Since (𝑋,,) is FP𝑇2(𝑖𝑣)-space, then there 

exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 such that 𝑥𝑟∈𝜇, 𝑦𝑝∗∈𝜆 and 𝜇∩ 𝜆=0. That is, 𝑥𝑟∈𝜇, (𝑦)≥𝑝∗ and 𝜇𝑞 ̅𝜆. 

Since (𝑦)≥𝑝∗ and 𝑝∗>1−𝑝, then we have 

(𝑦) >1−𝑝 ⇒(𝑦)+𝑝>1. So, 𝑦𝑝𝑞𝜆. 

Hence 𝑥𝑟∈ 𝜇, 𝑦𝑝𝑞𝜆 and 𝜇𝑞 ̅𝜆. Therefore (𝑋,,) is FP𝑇2(𝑖𝑖)-space. 

 

(b) ⇒ (e): Let 𝑥𝑟, be two distinct fuzzy points in 𝑋. Since (𝑋,,) is FP𝑇2(𝑖𝑖)-space, then there exist fuzzy sets 

𝜇∈𝑠,𝜆∈𝑡 such that 𝑥𝑟∈𝜇, 𝑦1−𝑝𝑞𝜆 and 𝜇𝑞̅𝜆. 

That is, 𝑥𝑟∈𝜇, (𝑦)+1−𝑝>1 and 𝜇⊆𝜆𝑐. 
That is, 𝑥𝑟∈𝜇, (𝑦)>𝑝 and 𝜇⊆𝜆𝑐. That is, 𝑥𝑟∈𝜇, 𝑦𝑝∈𝜆 and 𝜇⊆𝜆𝑐. Hence (𝑋,,) is FP𝑇2(𝑣). 

 

Theorem 3.5. If an fbts (𝑋,,) is 𝐹𝑃𝑇2(𝑗), then (𝑋,𝑠∪𝑡) is 𝐹𝑃𝑇2(𝑗), where j=I, ii, iii, iv, v. 

Proof: Obvious. 

The converse of the above theorem 3.5 is not true in general. 

 

Theorem 3.7. Let (𝑋,,) be a fuzzy bitopological space, 𝐴⊂𝑋 and 𝑠𝐴={𝑢/𝐴 ∶ 𝑢∈𝑠}, 𝑡𝐴={𝑣/𝐴 ∶𝑣∈𝑡}. Then 

(a) (𝑋,,) is 𝐹𝑃𝑇2(𝑖) ⇒ (𝐴,𝑠𝐴,𝑡𝐴) is 𝐹𝑃𝑇2(𝑖). 
(b) (𝑋,,) is 𝐹𝑃𝑇2(𝑖𝑖) ⇒ (𝐴,𝑠𝐴,𝑡𝐴) is 𝐹𝑃𝑇2(𝑖𝑖). 
(c) (𝑋,,) is 𝐹𝑃𝑇2(𝑖𝑖𝑖) ⇒ (𝐴,𝑠𝐴,𝑡𝐴) is 𝐹𝑃𝑇2(𝑖𝑖𝑖). 
(d) (𝑋,,) is 𝐹𝑃𝑇2(𝑖𝑣) ⇒ (𝐴,𝑠𝐴,𝑡𝐴) is 𝐹𝑃𝑇2(𝑖𝑣). 

(e) (𝑋,,) is 𝐹𝑃𝑇2(𝑣) ⇒ (𝐴,𝑠𝐴,𝑡𝐴) is 𝐹𝑃𝑇2(𝑣). 

 

Proof: (a) Suppose (𝑋,,) is 𝐹𝑃𝑇2(𝑖) . We have to show that (𝐴,,𝑡𝐴) is 𝐹𝑃𝑇2(𝑖). Let 𝑥𝑟,∈𝑆(𝐴) with x≠𝑦. Then 

𝑥𝑟,∈𝑆(𝑋) with x≠𝑦. Since (𝑋,,) is 𝐹𝑃𝑇2(𝑖), then there exist fuzzy sets 𝜇∈𝑠,𝜆∈𝑡 such that 𝑥𝑟𝑞𝜇, 𝑦𝑠𝑞𝜆 and 

𝜇∩𝜆=0. Now it is clear that 𝜇/𝐴 ∈𝑠𝐴, 𝜆/𝐴∈ 𝑡𝐴 for every 𝜇∈𝑠,∈𝑡 respectively. 

Now, 𝑥𝑟𝑞𝜇, 𝑦𝑠𝑞𝜆 implies that (𝑥)+𝑟>1 and 𝜆(𝑦)+𝑠>1. 

But, (𝜇/𝐴)(𝑥)=𝜇(𝑥) and (𝜆/𝐴)(𝑦)=𝜆(𝑦). Then (𝜇/𝐴)(𝑥)+𝑟>1 and (𝜆/𝐴)(𝑦)+𝑠>1. So, 𝑥(𝜇/𝐴), 𝑦𝑠𝑞(𝜆/𝐴). 

Also, (𝜇/𝐴)∩(𝜆/𝐴)=( 𝜇 ∩𝜆)/𝐴=0, since 𝜇∩𝜆=0. Hence (𝐴,,𝑡𝐴) is 𝐹𝑃𝑇2(𝑖). 
Proofs of (b), (c), (d) and (e) are similar. 

 

Theorem 3.8. Let (𝑋,1,𝑇2) be a bitopological space. Then 

(a) (𝑋, 𝑇1,2) is 𝑃𝑇2 ⇔ (𝑋,𝜔(𝑇1),𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖). 
(b) (𝑋, 𝑇1,2) is 𝑃𝑇2 ⇔ (𝑋,𝜔(𝑇1), 𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖𝑖). 
(c) (𝑋,1,𝑇2) is 𝑃𝑇2 ⇔ (𝑋, 𝜔(𝑇1), 𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖𝑖𝑖). 
(d) (𝑋,1,𝑇2) is 𝑃𝑇2 ⇔ (𝑋, 𝜔(𝑇1), 𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖𝑣). 

(e) (𝑋,1,𝑇2) is 𝑃𝑇2 ⇔ (𝑋, 𝜔(𝑇1), 𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑣). 
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Proof: (a) Suppose that (𝑋,1,𝑇2) is 𝑃𝑇2. We have to show that (𝑋,(𝑇1),𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖). Let 𝑥𝑝,∈𝑆(𝑋) with 

𝑥≠𝑦. Since (𝑋,1,𝑇2) is 𝑃𝑇2, then there exist 𝑈∈𝑇1, 𝑉∈𝑇2 such that 𝑥∈𝑈, 𝑦∈𝑉 and 𝑈∩𝑉=∅. This implies 

(1𝑈∈(𝑥𝑝,𝜔(𝑇1)),(1𝑉∈𝑁𝑄(𝑦𝑟,𝜔(𝑇2)) and 1𝑉∩1𝑈 =0. Hence (𝑋,(𝑇1),𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖). 

Conversely, suppose that (𝑋,(𝑇1),𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖). We have to show that (𝑋,1,𝑇2) is 𝑃𝑇2. Let 𝑥,∈𝑋 such that 

𝑥≠𝑦. Since (𝑋,𝜔(𝑇1), 𝜔(𝑇2)) is 𝐹𝑃𝑇2(𝑖), then (∃ 𝜇∈𝑁𝑄(𝑥1,𝜔(𝑇1)), (∃𝜂∈𝑁𝑄(𝑦1,𝜔(𝑇2)) and 𝜇∩ 𝜂=0. 

Now, 𝜇∈𝑁𝑄(𝑥1,𝜔(𝑇1)),𝜂∈𝑁𝑄(𝑦1,𝜔(𝑇2) implies that 𝜇(𝑥)+1>1 and 𝜂(𝑦)+1>1. That is, (𝑥)>0 and (𝑦)>0. Hence 

𝑥∈𝜇−1(0,1]∈𝑇1, 𝑦∈𝜂−1(0,1]∈𝑇2. 

To show that 𝜇−1(0,1]∩𝜂−1(0,1]=0, suppose that 𝜇−1(0,1]∩𝜂−1(0,1]≠0. Then there exists 

𝑧∈𝜇−1(0,1]∩𝜂−1(0,1] such that 𝜇(𝑧)>0 and 𝜂(𝑧)>0. Consequently (𝜇∩ 𝜂)(𝑧)≠0 which contradicts the fact that 

𝜇∩ 𝜂=0. 

Proofs of (c) and (d) are similar and for the proof of (b), cf. [9]. 

 

Theorem 3.9. Given {(𝑋𝑖,,𝑡𝑖):𝑖∈⋀} be a family of fuzzy bijtopological spaces. Then the product fbts (Π𝑋𝑖, Π𝑠𝑖, 
Π𝑡𝑖) is 𝐹𝑃𝑇2(𝑗) if each coordinate space (𝑋𝑖,𝑠𝑖,𝑡𝑖) is 𝐹𝑃𝑇2(𝑗), where 𝑗=𝑖,𝑖𝑖,𝑖𝑖𝑖,𝑖𝑣,𝑣. 

Proof: Suppose each coordinate space (𝑋𝑖,,𝑡𝑖) is 𝐹𝑃𝑇2(𝑖). We shall show that the product space is 𝐹𝑃𝑇2(𝑖). Let 

𝑥𝑟, 𝑦𝑠∈(Π𝑋𝑖) with 𝑥≠𝑦. Again suppose that 𝑥=Π𝑥𝑖, 𝑦=Π𝑦𝑖. Then 𝑥𝑖≠𝑦𝑖 for some 𝑖∈⋀, since 𝑥≠𝑦. Now consider 

(𝑥𝑖) ,(𝑦𝑖)𝑠 ∈𝑆(𝑋𝑖). Since (𝑋𝑖,,𝑡𝑖) is 𝐹𝑃𝑇2(𝑖), then there exist 𝜇𝑖∈𝑠𝑖,𝜆𝑖∈𝑡𝑖 such that (𝑥𝑖)𝑟 𝑞𝜇𝑖, (𝑦𝑖)𝑠 𝑞𝜆𝑖 and 

𝜇𝑖∩𝜆𝑖=0. Now consider 𝜇=Π𝜇𝑗 and 𝜆=Π𝜆𝑗, where 𝜇𝑖=𝜆𝑖=1 for 𝑖≠𝑗 and 𝜇𝑗=𝜇𝑗, 𝜆𝑗=𝜆𝑗. Then 𝜇∈Π𝑠𝑖, 𝜆∈Π𝑡𝑖 and 

we can easily show that 𝑥𝑟𝑞𝜇, 𝑦𝑠𝑞𝜆 and 𝜇∩𝜆=0. Hence the product space is 𝐹𝑃𝑇2(𝑖) . 
Other proofs are similar. 

 

Theorem 3.10. A bijective mapping from an fts (𝑋,) to an fts (𝑌,) preserves the value of a fuzzy singleton (fuzzy 

point). 

 

Proof: Let 𝑐𝑟 be a fuzzy singleton in 𝑋. So, there exist a point 𝑎∈𝑌 such that (𝑐)=𝑎. Now 

𝑓(𝑐𝑟)(𝑎)=𝑓(𝑐𝑟)(𝑓(𝑐))=sup𝑐𝑟(𝑐)=𝑐𝑟(𝑐)=𝑟, since 𝑓 is bijective. Hence 𝑎𝑟 has same value as 𝑐𝑟. 

 

Theorem 3.11. Let (𝑋,,) and (Y, 𝑠1,𝑡1) be two fuzzy bitopological spaces and let 𝑓:𝑋→𝑌 be bijective and 𝐹𝑃-

open. Then 

(a) (𝑋,,) is 𝐹𝑃𝑇2(𝑖) ⇒ (Y, 𝑠1,𝑡1) is 𝐹𝑃𝑇2(𝑖). 
(b) (𝑋,,) is 𝐹𝑃𝑇2(𝑖𝑖) ⇒ (Y, 𝑠1,𝑡1) is 𝐹𝑃𝑇2(𝑖𝑖). 
(c) (𝑋,,) is 𝐹𝑃𝑇2(𝑖𝑖𝑖) ⇒ (Y, 𝑠1,𝑡1) is 𝐹𝑃𝑇2(𝑖𝑖𝑖). 
(d) (𝑋,,) is 𝐹𝑃𝑇2(𝑖𝑣) ⇒ (Y, 𝑠1,𝑡1) is 𝐹𝑃𝑇2(𝑖𝑣). 

(e) (𝑋,,) is 𝐹𝑃𝑇2(𝑣) ⇒ (Y, 𝑠1,𝑡1) is 𝐹𝑃𝑇2(𝑣). 

 

Proof: (a) Suppose (𝑋,,) is 𝐹𝑃𝑇2(𝑖). We shall show that (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖). Let 𝑎𝑟,∈𝑆(𝑌) with 𝑎≠𝑏. Since 𝑓 is 

bijective, then there exist distinct fuzzy singletons 𝑐𝑟, in 𝑋 such that 𝑓(𝑐)=𝑎,𝑓(𝑑)=𝑏 and 𝑐≠𝑑. Again since (𝑋,,) 

is 𝐹𝑃𝑇2(𝑖), then there exist fuzzy sets 𝜇,∈𝑠, 𝜆∈𝑡 such that 𝑐𝑟𝑞 𝜇,𝑑𝑞𝑞𝜆 and 𝜇∩𝜆=0. 

Now, 𝑐𝑟𝑞 𝜇,𝑞𝜆 implies that 𝜇(𝑐)+𝑟>1 and 𝜆(𝑑)+𝑞>1. 

But 𝑓(𝜇)(𝑎)=𝑓(𝜇)(𝑓(𝑐))=sup𝜇(𝑐)=𝜇(𝑐), since 𝑓 is bijective. So (𝜇)(𝑎)+𝑟>1, since 𝜇(𝑐)+𝑟>1. Hence 𝑎𝑟(𝜇). 

Similarly, 𝑏𝑞(𝜆). 

Also, (𝜇∩𝜆)(𝑎)=sup(𝜇∩𝜆)(𝑐) ∶𝑓(𝑐)=𝑎 

(𝜇∩𝜆)(𝑏)=sup(𝜇∩𝜆)(𝑑) ∶𝑓(𝑑)=𝑏. 

Hence (𝜇∩𝜆)=0 ⇒ 𝑓(𝜇)∩𝑓(𝜆)=0. 

Since 𝑓 is 𝐹𝑃-open, then(𝜇) ∈𝑠1, 𝑓(𝜂)∈𝑡1. Now, it is clear that there exist 𝑓(𝜇) ∈𝑠1, 𝑓(𝜂)∈𝑡1 such that 𝑎𝑟𝑞𝑓(𝜇), 

𝑏𝑞𝑞𝑓(𝜆) and 𝑓(𝜇)∩𝑓(𝜆)=0. Hence (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖). 
Similarly, (b), (c), (d) and (e) can be proved. 

 

Theorem 3.12. Let (𝑋,,) and (Y, 𝑠1,𝑡1) be two fuzzy bitopological spaces and 𝑓:𝑋→𝑌 be 𝐹𝑃-continuous and 

bijective. Then 

(a) (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖) ⇒ (𝑋,𝑠,𝑡) is 𝐹𝑃𝑇2(𝑖). 
(b) (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖𝑖) ⇒ (𝑋,𝑠,𝑡) is 𝐹𝑃𝑇2(𝑖𝑖). 
(c) (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖𝑖𝑖) ⇒ (𝑋,𝑠,𝑡) is 𝐹𝑃𝑇2(𝑖𝑖𝑖). 
(d) (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖𝑣) ⇒ (𝑋,𝑠,𝑡) is 𝐹𝑃𝑇2(𝑖𝑣). 
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Proof: We shall prove (a) only. 

Suppose (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖). We claim that (𝑋,,) is 𝐹𝑃𝑇2(𝑖). For this, let 𝑐𝑟,∈𝑆(𝑋) with 𝑐≠𝑑. Then there exist 

distinct fuzzy singletons 𝑎𝑟, in 𝑌 such that 𝑓(𝑐)=𝑎,𝑓(𝑑)=𝑏 

and 𝑎≠𝑏, since 𝑓 is one-one. Again since (Y, 𝑠1,1) is 𝐹𝑃𝑇2(𝑖), then there exist fuzzy sets 𝜇,∈𝑠, 𝜆∈𝑡 such that 

𝑎𝑟𝑞𝜇, 𝑏𝑞𝑞𝜆 and 𝜆∩𝜇=0. 

This implies that (𝑎)+𝑟>1, 𝜆(𝑏)+𝑞>1 and 𝜆∩𝜇=0. 

That is, 𝜇(𝑓(𝑐))+𝑟>1, 𝜆(𝑓(𝑑))+𝑞>1 and 𝑓−1(𝜆∩𝜇)=0. 

That is, 𝑓−1(𝜇)(𝑐)+𝑟>1, 𝑓−1(𝜆)(𝑑)+𝑞>1 and 𝑓−1(𝜆)∩𝑓−1(𝜇)=0. 

That is, 𝑐𝑟𝑞𝑓−1(𝜇), 𝑑𝑞𝑞𝑓−1(𝜆) and 𝑓−1(𝜆)∩𝑓−1(𝜇)=0. 

Since 𝑓 is 𝐹𝑃-continuous, then 𝑓−1(𝜇)∈𝑠, 𝑓−1(𝜂)∈𝑡. Now, we see that there exist 𝑓−1(𝜇)∈𝑠, 𝑓−1(𝜂)∈𝑡 such that 

𝑐𝑟𝑞𝑓−1(𝜇), 𝑑𝑞𝑞𝑓−1(𝜆) and 𝑓−1(𝜆)∩𝑓−1(𝜇)=0. Hence (𝑋,,) is 𝐹𝑃𝑇2(𝑖). 
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