ljesm

Consulting, help, relaxation INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES

&

MANAGEMENT

FIND RELATIONS IN FUZZY PAIRWISE-72 BITOPOLOGICAL SPACE AND OTHER SUCH SPACES

C.S.Chauhan

Department Of Applied Science (Appl. Mathematics), Institute of Engineering and Technology DAVV Indore (M.P.), India

ABSTRACT

In mathematics, a bitopological space is a set endowed with two topologies. Typically, if the set is and the topologies are and then the bitopological space is referred to as . In this paper, we introduce a notion of fuzzy pairwise-T2 bitopological space and find relations with other such spaces. We also study some other properties of these concepts.

Keywords: Fuzzy Bitopological spaces; Q-neighbourhood; Fuzzy pairwise-*T*2 bitopological spaces. **INTRODUCTION**

Bitopological variants of topological properties

Corresponding to well-known properties of topological spaces, there are versions for bitopological spaces.

- A bitopological space (X,τ_1,τ_2) is **pairwise compact** if each cover $\{U_i|i\in I\}$ of X with $U_i\in\tau_1\cup\tau_2$, contains a finite subcover. In this case, $\{U_i|i\in I\}$ must contain at least one member from \mathcal{T}_1 and at least one member from \mathcal{T}_2
- A bitopological space (X,τ_1,τ_2) is **pairwise Hausdorff** if for any two distinct points $x,y \in X$ there exist disjoint $U_1 \in \tau_1$ and $U_2 \in \tau_2$ with $x \in U_1$ and $y \in U_2$.
- A bitopological space (X,τ_1,τ_2) is **pairwise zero-dimensional** if opens in (X,τ_1) which are closed in (X,τ_2) form a basis for (X,τ_1) , and opens in (X,τ_2) which are closed in (X,τ_1) form a basis for (X,τ_2) .
- A bitopological space (X, σ, τ) is called **binormal** if for every $F\sigma \sigma$ -closed and $F\tau \tau$ -closed sets there are $G\sigma \sigma$ -open and $G\tau \tau$ -open sets such that $F\sigma \subseteq G\tau F\tau \subseteq G\sigma$, and $G\sigma \cap G\tau = \emptyset$.

The notion of bitopological spaces was initially introduced by Kelly [7] in 1963. Concept of fuzzy pairwise-T2 (in short *FPT2*) bitopological spaces were introduced earlier by Kandil and El-Shafee [5]. Later on several other authors continued investigating such concepts. Fuzzy pairwise-T2 separation axioms have also been introduced by Abu Sufiya et al. [1] and Nouh [9]. The purpose of this paper is to introduce a definition of fuzzy pairwise-T2 bitopological space and derive some related results in this area. Also, we investigate that this concept holds good extension property in the sense of due to Lowen [1-4].

PRELIMINARIES ON FUZZY PAIRWISE-72 BITOPOLOGICAL SPACES

Now we recall some definitions and concepts which will be used in our work.

Definition2.1. A fuzzy set μ in a set X is a function from X into the closed unit interval I=[0,1]. For every $x \in X, (x) \in I$ is called the grade of membership of x. Throughout this paper, *IX* will denote the set of all fuzzy sets from X into the closed unit interval *I*.

Definition 2.2. Let f be a mapping from a set X into a set Y and u be a fuzzy set in X. Then the image of u, written as f(u), is a fuzzy set in Y whose membership function is given by $f(u)(y) = \{ \sup\{u(X)\} \text{ if } f^{-1}[\{x\}] \square$ and 0 for otherwise

[Chauhan, 2(3): July-September, 2012]

Definition 2.3. Let f^{-1} be a mapping from a set *X* into a set *Y* and *v* be a fuzzy set in *Y*. Then the inverse of *v* written as $f^{-1}(v)$ is a fuzzy set in *X* which is defined by $f^{-1}(v)(x)=v(f(x))$, for $x \in X$.

Definition 2.4. A fuzzy set μ in X is called a fuzzy singleton if $f(x)=r, (0 < r \le 1)$ for a certain $x \in X$ and $\mu(y)=0$ for all points y of X except x. The fuzzy singleton is denoted by xr and x is its support. We call xr is a fuzzy point if 0 < r < 1. The class of all fuzzy singletons in X will be denoted by (X).

Definition 2.5. A fuzzy topology t on X is a collection of members of IX which is closed under arbitrary suprema and finite infima and which contains constant fuzzy sets 1 and 0. The pair (X,t) is called a fuzzy topological space (fts, in short) and members of t are called t-open (or simply open) fuzzy sets. A fuzzy set μ is called a t- closed (or simply closed) fuzzy set if $1-\mu \in t$.

Definition 2.6.] Let (*X*,) and (*Y*,) be two fuzzy topological spaces. A mapping $f: (X,) \rightarrow (Y,s)$ is called an fuzzy continuous iff for every $v \in s$, $f-1(v) \in t$.

Definition 2.7. Let (X,) and (Y,) be two fuzzy topological spaces. A mapping $f: (X,) \rightarrow (Y,s)$ is called an fuzzy open iff for every $u \in t$, $f(u) \in s$.

Definition 2.8. Let *f* be a real valued function on a topological space. If $\{:(x) > \alpha\}$ is open for every real $\Box \in I1$, then *f* is called lower semi continuous function.

Definition 2.9. Let *X* be a nonempty set and *T* be a topology on *X*. Let t=(T) be the set of all lower semi continuous functions from (X,T) to *I* (with usual topology). Thus $(T)=\{\mu\in IX: \mu-1(\alpha,1]\in T\}$ for each $\alpha\in I1$. It can be shown that (T) is a fuzzy topology on *X*.

Let *P* be a property of topological spaces and *FP* be its fuzzy topology analogue. Then *FP* is called a 'good extension' of *P* "iff the statement (*X*,) has *P* iff (*X*,(*T*)) has *FP*" holds good for every topological space (*X*,*T*).

Definition 2.10. A fuzzy singleton xr is said to be quasi-coincident with a fuzzy set μ , denoted by $xrq\mu$ iff r+(x)>1. If xr is not quasi-coincident with μ , we write $xrq\overline{\mu}$.

Definition 2.11. A fuzzy set u of (X) is called quasi-neighborhood (Q-nbd, in short) of xr iff there exists $v \in t$ such that xrqv and $v \subset u$. If xr is a fuzzy point or a fuzzy single tone, then $(xr) = \{\mu \in t : xr \in \mu\}$ is the family of all fuzzy *t*-open neighborhoods (*t*-nbds, in short) of xr and $NQ(xr,t) = \{\mu \in t : xrq \ \mu\}$ is the family of all Q-neighborhoods (Q-nbd, in short) of xr.

Definition 2.12. A fuzzy bitopological space (fbts, in short) is a triple (X_{n}) where s and t are arbitrary fuzzy topologies on X.

Definition 2.13. Let $(X_{,,})$ and (Y,s_{1},t_{1}) be two fuzzy bitopological spaces. A mapping $f: (X,s,t) \rightarrow (Y,s,t)$ is called an fuzzy FP-continuous iff $f: (X,s) \rightarrow (Y,s_{1})$ and $f: (X,t) \rightarrow (Y,t_{1})$ are both continuous.

Definition 2.14. Let $(X_{,,})$ and (Y,s1,t1) be two fuzzy bitopological spaces. A mapping $f: (X,s,t) \rightarrow (Y,s,t)$ is called an fuzzy FP-open iff $f: (X,s) \rightarrow (Y,s1)$ and $f: (X,t) \rightarrow (Y,t1)$ are both open.

Definition 2.15. A space (X,S,T) is said to be pairwise Hausdorff iff for each two distinct points x and y, there are a S-neighbourhood U of x and a T-neighbourhood V of y such that $U \cap V = \emptyset$ [3-8].

FUZZY PAIRWISE T2-SPACES

Definition 3. 1. An fbts (*X*,,) is called (a) *FPT*2(*i*) iff for every pair of fuzzy singletons *xr*,*ys* in *X* with $x \neq y$, there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xrq\mu$, $ysq\lambda$ and $\mu \cap \lambda = 0$.

(b)[9] FPT2(ii) iff $(\forall xr, ys \in S(X), x \neq y)$, $(\exists \mu \in N(xr, s)(\exists \lambda \in NQ(yr, t)) \quad (\mu q \lambda)$ or $(\exists \mu * \in N(xr, t)(\exists \lambda * \in NQ(yr, s))(\mu * q \lambda *).$

(c)[5] *FPT*2(*iii*) iff for every pair of fuzzy singletons xp,yr in X such that $xp\bar{q}yr$, there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xp \in \mu$, $yr \in \lambda$ and $\mu q \bar{\lambda}$.

(d)[1] *FPT2(iv)* iff for every pair of fuzzy singletons xr, ys in X with $x \neq y$, there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xr \in \mu$, $ys \in \lambda$ and $\mu \cap \lambda = 0$.

(e)[1] *FPT*2(v) iff for any two distinct fuzzy points xr, ys in X, there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xr \in \mu$, $ys \in \lambda$ and $\mu \subseteq \lambda c$.

Theorem 3.2. Let (*X*,,) be an fbts. Then we have the following implications: (a) \Leftrightarrow (d) \Rightarrow (b) \Rightarrow (e) but (b) \Rightarrow (d), (e) \Rightarrow (b), (a) \Rightarrow (c) and (c) \Rightarrow (a).

Proof: (a) \Rightarrow (d): Let $xr, \in S(X)$ with $x \neq y$. Since (X, .) is FPT2(*i*)-space, then there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $x1-rq\mu$, $y1-pq\lambda$ and $\mu \cap \lambda = 0$. That is, (x)>r, (y)>p and $\mu \cap \lambda = 0$. So, $xr \in \mu$, $yp \in \lambda$ and $\mu \cap \lambda = 0$. Hence (X, .) is FPT2(*iv*)-space. Similarly we can show that (d) \Rightarrow (a).

(d) \Rightarrow (b): Let $xr, \in S(X)$ with $x \neq y$. Choose $p \in (0,1)$ such that $p \geq 1-p$. Since $(X_{,,})$ is FPT2(*iv*)-space, then there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xr \in \mu$, $yp \in \lambda$ and $\mu \cap \lambda = 0$. That is, $xr \in \mu$, $(y) \geq p \ast$ and $\mu q \overline{\lambda}$. Since $(y) \geq p \ast$ and $p \gg 1-p$, then we have $(y) \geq 1-p \Rightarrow (y)+p \geq 1$. So, $ypq\lambda$. Hence $xr \in \mu$, $ypq\lambda$ and $\mu q \overline{\lambda}$. Therefore $(X_{,,})$ is FPT2(*ii*)-space.

(b) \Rightarrow (e): Let *xr*, be two distinct fuzzy points in *X*. Since (*X*,,) is FPT2(*ii*)-space, then there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xr \in \mu$, $y1-pq\lambda$ and $\mu q \overline{\lambda}$. That is, $xr \in \mu$, (y)+1-p>1 and $\mu \subseteq \lambda c$. That is, $xr \in \mu$, (y)>p and $\mu \subseteq \lambda c$. That is, $xr \in \mu$, $yp \in \lambda$ and $\mu \subseteq \lambda c$. Hence (*X*,,) is FPT2(*v*).

Theorem 3.5. If an fbts $(X_{,,})$ is FPT2(j), then $(X, s \cup t)$ is FPT2(j), where j=I, ii, iii, iv, v. **Proof:** Obvious. The converse of the above theorem 3.5 is not true in general.

Theorem 3.7. Let $(X_{,v})$ be a fuzzy bitopological space, $A \subset X$ and $sA = \{u/A : u \in s\}$, $tA = \{v/A : v \in t\}$. Then (a) $(X_{,v})$ is $FPT2(i) \Rightarrow (A, sA, tA)$ is FPT2(i). (b) $(X_{,v})$ is $FPT2(ii) \Rightarrow (A, sA, tA)$ is FPT2(ii). (c) $(X_{,v})$ is $FPT2(iii) \Rightarrow (A, sA, tA)$ is FPT2(iii). (d) $(X_{,v})$ is $FPT2(iv) \Rightarrow (A, sA, tA)$ is FPT2(iv). (e) $(X_{,v})$ is $FPT2(v) \Rightarrow (A, sA, tA)$ is FPT2(v).

Proof: (a) Suppose (*X*,,) is *FPT*2(*i*). We have to show that (*A*,,*tA*) is *FPT*2(*i*). Let $xr, \in S(A)$ with $x \neq y$. Then $xr, \in S(X)$ with $x \neq y$. Since (*X*,,) is *FPT*2(*i*), then there exist fuzzy sets $\mu \in s, \lambda \in t$ such that $xrq\mu$, $ysq\lambda$ and $\mu \cap \lambda = 0$. Now it is clear that $\mu/A \in sA$, $\lambda/A \in tA$ for every $\mu \in s, \in t$ respectively. Now, $xrq\mu$, $ysq\lambda$ implies that (x)+r>1 and $\lambda(y)+s>1$. But, $(\mu/A)(x)=\mu(x)$ and $(\lambda/A)(y)=\lambda(y)$. Then $(\mu/A)(x)+r>1$ and $(\lambda/A)(y)+s>1$. So, $x(\mu/A)$, $ysq(\lambda/A)$. Also, $(\mu/A)\cap(\lambda/A)=(\mu \cap \lambda)/A=0$, since $\mu \cap \lambda = 0$. Hence (*A*,,*tA*) is *FPT*2(*i*). Proofs of (b), (c), (d) and (e) are similar.

Theorem 3.8. Let (X, 1, T2) be a bitopological space. Then (a) (X, T1, 2) is $PT2 \Leftrightarrow (X, \omega(T1), \omega(T2))$ is FPT2(i). (b) (X, T1, 2) is $PT2 \Leftrightarrow (X, \omega(T1), \omega(T2))$ is FPT2(ii). (c) (X, 1, T2) is $PT2 \Leftrightarrow (X, \omega(T1), \omega(T2))$ is FPT2(iii). (d) (X, 1, T2) is $PT2 \Leftrightarrow (X, \omega(T1), \omega(T2))$ is FPT2(iv). (e) (X, 1, T2) is $PT2 \Leftrightarrow (X, \omega(T1), \omega(T2))$ is FPT2(iv).

Proof: (a) Suppose that (X,1,T2) is *PT2*. We have to show that $(X,(T1),\omega(T2))$ is *FPT2*(*i*). Let $xp \in S(X)$ with $x \neq y$. Since (X,1,T2) is *PT2*, then there exist $U \in T1$, $V \in T2$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. This implies $(1U \in (xp,\omega(T1)), (1V \in NQ(yr,\omega(T2)))$ and $1V \cap 1U = 0$. Hence $(X,(T1),\omega(T2))$ is *FPT2*(*i*).

Conversely, suppose that $(X,(T1),\omega(T2))$ is FPT2(i). We have to show that (X,1,T2) is PT2. Let $x,\in X$ such that $x\neq y$. Since $(X,\omega(T1),\omega(T2))$ is FPT2(i), then $(\exists \mu \in NQ(x1,\omega(T1))), (\exists \eta \in NQ(y1,\omega(T2)))$ and $\mu \cap \eta = 0$.

Now, $\mu \in NQ(x_1, \omega(T_1)), \eta \in NQ(y_1, \omega(T_2))$ implies that $\mu(x)+1>1$ and $\eta(y)+1>1$. That is, (x)>0 and (y)>0. Hence $x \in \mu - 1(0,1] \in T1$, $y \in \eta - 1(0,1] \in T2$.

To show that $\mu - 1(0,1] \cap \eta - 1(0,1] = 0$, suppose that $\mu - 1(0,1] \cap \eta - 1(0,1] \neq 0$. Then there exists $z \in \mu - 1(0,1] \cap \eta - 1(0,1]$ such that $\mu(z) > 0$ and $\eta(z) > 0$. Consequently $(\mu \cap \eta)(z) \neq 0$ which contradicts the fact that $\mu \cap \eta = 0$.

Proofs of (c) and (d) are similar and for the proof of (b), cf. [9].

Theorem 3.9. Given $\{(X_{i,i},t_{i}):i\in \Lambda\}$ be a family of fuzzy bijtopological spaces. Then the product fbts $(\Pi X_{i}, \Pi s_{i}, \Pi t_{i})$ is FPT2(j) if each coordinate space $(X_{i,s},t_{i})$ is FPT2(j), where j=i,ii,iii,iv,v.

Proof: Suppose each coordinate space (X_i, t_i) is FPT2(i). We shall show that the product space is FPT2(i). Let $xr, ys \in (\Pi Xi)$ with $x \neq y$. Again suppose that $x = \Pi xi, y = \Pi yi$. Then $xi \neq yi$ for some $i \in \Lambda$, since $x \neq y$. Now consider $(xi), (yi)s \in S(Xi)$. Since (Xi, t_i) is FPT2(i), then there exist $\mu i \in si, \lambda i \in t_i$ such that $(xi)r \ q\mu i$, $(yi)s \ q\lambda i$ and $\mu i \cap \lambda i = 0$. Now consider $\mu = \Pi \mu j$ and $\lambda = \Pi \lambda j$, where $\mu i = \lambda i = 1$ for $i \neq j$ and $\mu j = \mu j, \ \lambda j = \lambda j$. Then $\mu \in \Pi si, \ \lambda \in \Pi ti$ and we can easily show that $xrq\mu$, $ysq\lambda$ and $\mu \cap \lambda = 0$. Hence the product space is FPT2(i). Other proofs are similar.

Theorem 3.10. A bijective mapping from an fts (X) to an fts (Y) preserves the value of a fuzzy singleton (fuzzy point).

Proof: Let cr be a fuzzy singleton in X. So, there exist a point $a \in Y$ such that (c)=a. Now $f(cr)(a)=f(cr)(f(c))=\sup cr(c)=cr(c)=r$, since f is bijective. Hence ar has same value as cr.

Theorem 3.11. Let (X_{n}) and (Y, s_{n}, t_{1}) be two fuzzy bitopological spaces and let $f: X \rightarrow Y$ be bijective and *FP*-open. Then

(a) $(X_{,,i})$ is $FPT2(i) \Rightarrow (Y, s1,t1)$ is FPT2(i). (b) $(X_{,,i})$ is $FPT2(ii) \Rightarrow (Y, s1,t1)$ is FPT2(ii). (c) $(X_{,,i})$ is $FPT2(iii) \Rightarrow (Y, s1,t1)$ is FPT2(iii). (d) $(X_{,,i})$ is $FPT2(iv) \Rightarrow (Y, s1,t1)$ is FPT2(iv). (e) $(X_{,,i})$ is $FPT2(v) \Rightarrow (Y, s1,t1)$ is FPT2(v).

Proof: (a) Suppose (X, .) is FPT2(i). We shall show that (Y, s1, 1) is FPT2(i). Let $ar, \in S(Y)$ with $a \neq b$. Since f is bijective, then there exist distinct fuzzy singletons cr, in X such that f(c)=a, f(d)=b and $c\neq d$. Again since (X, .) is FPT2(i), then there exist fuzzy sets $\mu, \in s, \lambda \in t$ such that $crq \mu, dqq\lambda$ and $\mu \cap \lambda = 0$.

Now, $crq \mu, q\lambda$ implies that $\mu(c)+r>1$ and $\lambda(d)+q>1$. But $f(\mu)(a)=f(\mu)(f(c))=\sup\mu(c)=\mu(c)$, since f is bijective. So $(\mu)(a)+r>1$, since $\mu(c)+r>1$. Hence $ar(\mu)$. Similarly, $bq(\lambda)$. Also, $(\mu\cap\lambda)(a)=\sup(\mu\cap\lambda)(c):f(c)=a$ $(\mu\cap\lambda)(b)=\sup(\mu\cap\lambda)(d):f(d)=b$. Hence $(\mu\cap\lambda)=0 \Rightarrow f(\mu)\cap f(\lambda)=0$.

Since f is FP-open, then(μ) \in s1, $f(\eta)\in$ t1. Now, it is clear that there exist $f(\mu) \in$ s1, $f(\eta)\in$ t1 such that $arqf(\mu)$, $bqqf(\lambda)$ and $f(\mu)\cap f(\lambda)=0$. Hence (Y, s1,1) is FPT2(i). Similarly, (b), (c), (d) and (e) can be proved.

Theorem 3.12. Let $(X_{,,})$ and (Y, s_{1},t_{1}) be two fuzzy bitopological spaces and $f:X \rightarrow Y$ be *FP*-continuous and bijective. Then (a) $(Y, s_{1}, 1)$ is $FPT2(i) \Rightarrow (X, s, t)$ is FPT2(i). (b) $(Y, s_{1}, 1)$ is $FPT2(ii) \Rightarrow (X, s, t)$ is FPT2(ii). (c) $(Y, s_{1}, 1)$ is $FPT2(iii) \Rightarrow (X, s, t)$ is FPT2(iii). (d) $(Y, s_{1}, 1)$ is $FPT2(iv) \Rightarrow (X, s, t)$ is FPT2(iv).

Proof: We shall prove (a) only.

Suppose (Y, s1,1) is FPT2(i). We claim that (X,) is FPT2(i). For this, let $cr, \in S(X)$ with $c \neq d$. Then there exist distinct fuzzy singletons ar, in Y such that f(c)=a, f(d)=b

and $a \neq b$, since f is one-one. Again since (Y, s1,1) is FPT2(i), then there exist fuzzy sets $\mu \in s$, $\lambda \in t$ such that $arq\mu$, $bqq\lambda$ and $\lambda \cap \mu = 0$.

This implies that (*a*)+*r*>1, $\lambda(b)$ +*q*>1 and $\lambda \cap \mu = 0$.

That is, $\mu(f(c))+r>1$, $\lambda(f(d))+q>1$ and $f-1(\lambda \cap \mu)=0$.

That is, $f-1(\mu)(c)+r>1$, $f-1(\lambda)(d)+q>1$ and $f-1(\lambda)\cap f-1(\mu)=0$.

That is, $crqf-1(\mu)$, $dqqf-1(\lambda)$ and $f-1(\lambda)\cap f-1(\mu)=0$.

Since f is FP-continuous, then $f-1(\mu)\in s$, $f-1(\eta)\in t$. Now, we see that there exist $f-1(\mu)\in s$, $f-1(\eta)\in t$ such that $crqf-1(\mu)$, $dqqf-1(\lambda)$ and $f-1(\lambda)\cap f-1(\mu)=0$. Hence (X, γ) is FPT2(i).

REFERENCES

- 1. J. C. Kelly, Bitopological spaces, Proceeding of the London Mathematical Society, 13 (1963), 71-89.
- 2. R. Lowen, Fuzzy topological spaces and fuzzy compactness, Journal of Mathematical Analysis and Applications, 56 (1976), 621-623.
- 3. A. A. Nouh, On separation axioms in fuzzy bitopological spaces, Fuzzy Sets and Systems, 80 (1996), 225-236.
- 4. A.S. Abu Sufiya, A.A. Fora, M. W. Warner, Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces, Fuzzy sets and Systems, 62 (1994), 367-373.
- 5. M. A. M. Talukder and D. M. Ali, Certain Properties of Countably Q –Compact Fuzzy sets, Journal of Mathematical and Computational Science, 4 (2014), 446-462.
- 6. C. K. Wong, Fuzzy Points and Local Properties of Fuzzy Topology, Journal of Mathematical Analysis and Applications, 46 (1974), 316-328.
- 7. D. M. Ali, On Certain Separation and Connectedness Concepts in Fuzzy Topology, Ph. D. Thesis, Banaras Hindu University, India, 1990.
- 8. M. S. Hossain and D. M. Ali, On *T*1 Fuzzy Bitopological Spaces, Journal of Bangladesh Academy of Sciences, 31 (2007), 129–135.